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A numerical study of the three-dimensional internal waves excited by topography in 
the flow of a stratified fluid is described. In the resonant flow of a nearly two-layer fluid, 
it is found that the time-development of the nonlinearly excited waves agrees 
qualitatively with the solution of the forced KP equation or the forced extended KP 
equation. In this case, the upstream-advancing solitary waves become asymptotically 
straight crested because of abnormal reflection at the sidewall similar to Mach 
reflection. The same phenomenon also occurs in the subcritical flow of a nearly two- 
layer fluid. However, in the subcritical flow of a linearly stratified Boussinesq fluid, the 
two-dimensionalization of the upstream waves can be interpreted as the separation of 
the lateral modes due to the differences in the group velocity of the linear wave, 
although this does not mean in general that the generation of upstream waves is 
describable by the linearized equation. 

1. Introduction 
Recent studies on the waves excited by an obstacle in a flow have revealed the basic 

nonlinear wave-generation mechanism. The mechanism is now found to be essentially 
the same for water waves, internal gravity waves in stratified flows and inertial waves 
in swirling flows. 

To describe two-dimensional nonlinear water waves, the forced Boussinesq 
equations (Wu 1981), the Green-Naghdi (GN) equations (Green & Naghdi 1976~1, b) 
and the forced Korteweg-de Vries (fKdV) equation (Akylas 1984) have been derived. 
Their applicability has been verified experimentally by Ertekin (1 984), Ertekin, 
Webster & Wehausen (1984) and Lee, Yates & Wu (1989) among others. 

For two-dimensional internal waves in stratified flows Grimshaw & Smyth (1986) 
derived the fKdV equation. In experiments and numerical studies of two-layer flow, 
Zhu, Wu & Yates (1986, 1987) and Melville & Helfrich (1987) found that the fKdV 
equation is qualitatively applicable to two-layer flow in that it predicts the existence of 
upstream-advancing waves near resonance. However, they noticed that the upstream- 
advancing speed of the solitary wave is smaller compared to the prediction of the fKdV 
equation. Hanazaki (1992) numerically solved the Navier-Stokes equations and got 
similar results. Melville & Helfrich (1987) proposed the forced extended KdV (fEKdV) 
equation that has a cubic nonlinear term in addition to the usual quadratic nonlinear 
term of the fKdV equation. Hanazaki (1992) showed theoretically that the cubic 
nonlinear term cannot be neglected unless the wave amplitude is extremely small since 
the coefficient of the quadratic nonlinear term is very small for internal waves in a two- 
layer fluid. 

For axisymmetric inertial waves in swirling flows, Grimshaw (1990) derived the 
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fKdV equation and Hanazaki (1991, 1993a) showed its applicability by comparing its 
solution with the solution of the Navier-Stokes equations. 

For three-dimensional water waves Ertekin (1984) and Ertekin et al. (1984) did 
systematic experiments and found that the upstream solitary waves become straight 
crested. Later, Cole (1987) solved analytically the linearized equations for three- 
dimensional water waves and found that the upstream waves become two-dimensional 
in the long-time limit if the flow is near resonance. To find the applicability of the 
nonlinear model equations to three-dimensional water waves, Ertekin, Webster & 
Wehausen (1986) solved the GN equations, Katsis & Akylas (1987) solved the forced 
Kadomtsev-Petviashvili (KP) equation and Pedersen (1988), Ertekin & Qian (1990) 
and Ertekin, Qian & Wehausen (1990) solved the forced Boussinesq equations. They 
found that, near resonance, the upstream waves become two-dimensional and the 
amplitude and the generation period of the upstream waves agree with the experiments. 
From their results, Ertekin (1984), Katsis & Akylas (1987) and Pedersen (1988) argued 
that the mechanism of the two-dimensionalization is explained by the Mach reflection 
(Miles 1977a, b) of the upstream solitary waves at the sidewall of the channel. More 
recently, Tomasson & Melville (1991) solved an equation similar to the fKP equation 
that becomes the fKP equation if an additional condition (see their (21)) is assumed. 
Although their main concern was the internal wave excited by a sidewall perturbation 
in two-layer flow, the equation can be applied qualitatively well to water waves. When 
the flow is subcritical, the solution of that equation agreed well with the solution of its 
linearized version. So they argued that the two-dimensionalization can be explained by 
the linear theory. They showed that, according to the linear dispersion relation, the 
lowest mode that spans the entire channel width has the largest group velocity among 
all the lateral modes. This supports the results by Cole (1987) described above. 

For three-dimensional internal waves in a two-layer fluid, Tomasson & Melville 
(1991) studied the possible effects of the cubic nonlinear term in their model equation 
as they did for the two-dimensional waves (Melville & Helfrich 1987). They found 
again similar differences between the solution of the equation with a cubic nonlinear 
term and that with only a quadratic nonlinear term. Miloh, Tulin & Zilman (1993) 
showed that the divergence of the solution of the linear theory that occurs at the usual 
resonance condition can be avoided if the dispersion of the wave is taken into account. 
Then they solved the linearized equations near resonance, although the generation of 
upstream waves was not considered. In an experimental study for a supercritical flow, 
Ma & Tulin (1993) developed a technique that makes possible the accurate 
measurement of three-dimensional internal waves and compared the downstream wave 
patterns obtained with the linear theories based on the stationary phase method (Tulin 
& Miloh 1991). They found a long narrow V-wake behind a ship as in field 
observations by remote sensing radar, and found good agreement with the linear 
theories for the wave field sufficiently far from the ship. However, no experimental 
study exists on three-dimensional nonlinear internal waves. How applicable are the 
nonlinear theories to three-dimensional stratified flows? Especially, we want to know 
if the Mach reflection and the subsequent two-dimensionalization of the upstream 
waves occur as in water waves. We also note here that, even for water waves, the 
process of Mach reflection of the upstream waves excited by an obstacle has not been 
thoroughly investigated by experiments or by solving the fully nonlinear equations, 
although Ertekin (1984) gave a brief sketch of the phenomenon. 

The study of internal waves in the flow of a linearly stratified Boussinesq fluid 
requires special treatment since it is now known that all the nonlinear terms in the 
KdV-type equations identically vanish in this case. Here, the nonlinearity of the wave 
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would be quite different from that in the flow of a two-layer fluid (see Appendix to 
Grimshaw & Yi 1991). Although there are several experimental studies on two- 
dimensional waves in the flow of a linearly stratified Boussinesq fluid (e.g. Baines 1977, 
1979; Castro & Snyder 1988), none of these give a three-dimensional perspective of the 
upstream wave. Hanazaki (1989~) has found that the upstream waves become two- 
dimensional by solving the three-dimensional Navier-Stokes equations. However, the 
channel width was too small to investigate the process of the two-dimensionalization 
of the upstream wave. Theoretically, Grimshaw & Yi (1991) derived a model finite- 
amplitude equation for the two-dimensional resonant flow and it was quantitatively 
verified numerically by Hanazaki (1992, I993 6). However, the extension of Grimshaw 
& Yi's theory to three-dimensional waves has yet to be done. Since the linearly 
stratified Boussinesq fluid is one of the most typical density stratifications that have 
been extensively studied theoretically and experimentally, the investigation of the 
three-dimensional aspects of the internal waves in that stratification is also of much 
interest. 

In this study, three-dimensional Navier-Stokes equations for stratified flows are 
solved numerically. First, near-resonant flow of a nearly two-layer fluid is considered. 
We show to what extent the waves resonantly excited by an obstacle are describable by 
the fKP or the fEKP equations. In particular, we show that abnormal reflection similar 
to Mach reflection occurs at the sidewall and the two-dimensionalization of the 
upstream waves can be explained by that abnormal reflection. We also check the 
possibility that the two-dimensionalization is explained by the different group 
velocities among the lateral modes of the linear wave. Next, subcritical flow of a nearly 
two-layer fluid is considered. We show that Mach reflection and the subsequent two- 
dimensionalization of the upstream waves occur again in this case. Finally, results for 
waves in the flow of a linearly stratified Boussinesq fluid are given. The nonlinearity of 
the wave would be different in this case and we will see that upstream waves behave 
differently from waves in the two-layer fluid. 

2. Theory 
We study the laminar flow of the three-dimensional stratified fluid. Internal waves 

are generated by topography located on the bottom of a rectangular channel (see figure 
I). Upstream flow has a uniform velocity U and a vertical density stratification given 
by p(z). The governing equations are the Navier-Stokes equations for an in- 
compressible stratified fluid : 

-+(v an - 0) v = --Vp-g&+-V%, 1 P 
at P P 

~ + ( v . V ) p = O ,  at 

(2.1 a)  

(2.16) 

v - v  = 0, (2.1 c) 

where v = (u, v ,  w) is the velocity, p is the pressure, p is the density, ,u is the viscosity 
coefficient, g is the acceleration due to gravity and z" is the unit vector along the z-axis. 
Equation (2.1 b) is the condition of incompressibility and, together with (2.1 c), assures 
the conservation of mass. 

Although the full Navier-Stokes equations will be solved at a finite Reynolds 
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PlGURl: 1 .  Schematic view of‘ the flow geometry. 

number in $43 and 4, we review here briefly the weakly nonlinear theories (the fKP 
equation and the fEKP equation) derived from the inviscid form of (2.1) for later 
comparison ($4) with the solution of the Navier-Stokes equations. T o  derive the K P  
equation and the fEKP equation from the inviscid form of (2.1), we rescale .Y, J‘ and 
t as 

X = tf,, Y = f;?’, T = t i t ,  (2.2) 

where t is a small parameter, and expand dependent variables in powers of c as 

I Y 

L1 = I/+ c 6 ,1 r /u ( / l l )  [’ = ( ; / I / - ;  ,I‘ ( / ? I )  , ,,, = c p t $ t ( i / z )  (2.3 a-c) 
m=1 / I /  = 1 rii = I  

1 Y. 

(2.3 d, e )  P /I1 = 1 

p = ~ ( z )  + C t”’pO’o, p = -g  P(Z) d: + C t ”p ‘ ” ) .  
in=l 

We scale the obstacle height h as 

/z = t 2 H ( X ,  Y, T ) .  (2.4) 

The scalings in (2.2), (2.3) and (2.4) assure the balance between the effects of 
nonlinearity, dispersion and the forcing by the obstacle in the leading-order terms of 
the perturbation field. 

We assume that the vertical displacement of the fluid < is written as 

= @ I )  + O(2) = eA(X ,  Y, T )  f$&) + O(s’). (2.5) 

Then, at O(c;), we obtain a Sturm-Liouville equation for $7L(z) :  

( 2 . 6 ~ )  

(2.66) 
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where Ct,(Cl > C., > . . . ) and $t,(:) are. rcspectiveib. the /it11 eigcnvaluc a n d  the 17th 

eigcnfunction. 
We then obtain. at O(c'), the fKP equation. If we consider also the effect of the cubic 

nonlinearity of higher order. i.e. we obtain the tEKP equation for A ( X ,  Y .  T ) :  

(2.7h) c- c,, where =-, 
I 

The fKP equation is obtained by neglecting the cubic nonlinear term r.ri,A?A.,- in 
(2 .7a) .  In a two-dimensional two-layer flow, Melville & Helfrich (1987) found by 
experiments that the effect of the cubic nonlinearity cannot be neglected and proposed 
the E K d V  equation. Tomasson & Melville (1991) calculated the ratio of the quadratic 
and cubic nonlinear terms under the Boussinesq approximation. then solved their 
model equation for three-dimensional internal waves with a cubic nonlinear term. They 
found a monotonic-bore solution near resonance (see their figures 1 1  and 13h). 
Hanazaki (1992) showed that, in a general two-layer fluid. the ratio f ; ( i , /u ,  is very large 
compared to that in a water wave and the internal waves would be well described by 
the fKdV equation only when the amplitude of the wave is very small (see his equation 
(1 8) and figure 5 ) .  In this study the solutions of both the fKP and the fEKP equations 
are compared with the wave profile A ( X ,  Y ,  T )  obtained from the solutions of the fully 
nonlinear Navier-Stokes equations. 

In the special case of a linearly stratified Boussinesq fluid. (2.6") becomes 

where the constant Brunt-Vgisalg frequency is given by 

Therefore, $,*(:) and C,, become 

and 

( 2 . 8 ~ )  

(2.8h) 

( 2 . 9 ~ )  

(2.9h) 

Substituting (2.9a) into (2 .7c,  g )  and setting ~ ( 2 )  constant in the integrand, we find that 
( i l  = 0, which means that the quadratic nonlinear term in the fKP and E K P  equation 
vanishes. In this case, the nonlinear correction of the linear wave speed would be very 
small. This can be expected from the solution of the equation derived by Grimshaw & 
Yi (1991) and also from the numerical solution of the two-dimensional Navier-Stokes 
equations (Hanazaki 1992, 1993h). 
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3. Numerical method 
The governing equations for the nearly two-layer flow are (2.1a-c), while the 

equations for the linearly stratified Boussinesq fluid are the same as in Hanazaki 
(1989~) .  The numerical method is an extension of the usual MAC (marker and cell) 
method for fluid of uniform density to stratified fluid. The body-fitted curvilinear 
coordinates (Thames et al. 1977) are also used. These have been used in previous 
numerical studies on stratified flows (Hanazaki 1989u, b, 1992, 1993b). The time 
derivatives are approximated by the forward differences of first-order accuracy. The 
space derivatives are approximated by central differences of second-order accuracy 
except for the nonlinear terms where a scheme of third-order accuracy (Kawamura, 
Takami & Kuwahara 1986) is used. 

The computation was done in the domain (see figure 1) 

xmin d x < xmaX, 0 d y d Y,,, = W, h(x,y) d z d zmax = D, (3.1) 
where Wis the half-width of the channel, D is the channel depth and the obstacle shape 
is given by 

and 
h(x,y)  = 0 for (GJ+(hT 

( 3 . 2 ~ )  

(3.2b) 

with h,,, = 0.1D. ( 3 . 2 ~ )  

The computation is done only for y 3 0 because we assume the symmetry of the flow 
with respect to the plane y = 0. At y = W and z = D, rigid walls exist and the waves 
are reflected by these walls. 

on the upstream boundary (x = xmin), 

The boundary conditions for the nearly two-layer flow are as follows: 

u = (U,  0,O) and p = p(z);  (3.3a) 

and on the downstream boundary (x = x,,,), 

av an  aP aP 
at ax a t  ax -+u-=O and -+u--0. (3.3b) 

On the sidewall 0, = ymax = W )  and on the lower and the upper boundary 

( z  = h(x, .?J>, z = z,,, = D), 
the velocity satisfies the impermeability condition and the free shear stress condition 

( 3 . 3 ~ ,  d )  

where n is the unit normal to the boundary and vt is the tangential velocity. The density 
satisfies 

P=o on y=y,,,= W,  (3.3e) 
aY 

p = p(0) on z = h(x,y),  (3 .3 f )  

u * n = 0, (n - V) ut = 0, 
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and p = p ( D )  on z = zmns  = D .  (3 .3g )  

In the case of horizontally unbounded flow ( W = m) (see figure 8b), the velocity u on 
the sidewall was determined by a simple extrapolation instead of ( 3 . 3 ~ ,  d).  

The undisturbed density distribution p(z)  is given by 

(3 .4a)  

with p(D)  = 0.9~(0), h, = 0.30. (3.4b, c) 

This vertical density distribution is the same as that of the nearly two-layer two- 
dimensional flow in Hanazaki (1992) and determines the coefficients of the fKP or the 
E K P  equations from ( 2 . 7 ~ ,  d,  e and g )  (with n = 1) as 

~1~ = 2.990-l, U, = 2.62 x 100-', a3 = 3.52 x 1OP2D2, (3.5 a-c) 

when we normalize q5n(z) so that q5n(z),a, = 1. For linearly stratified Boussinesq flow 
also, boundary conditions similar to (3.3) are used. 

In this study, the Froude number is defined by 

F = U/C,, (3.6) 

where C, is the maximum eigenvalue of the Sturmn-Liouville problem (2.6). Specifically, 
in the case of linearly stratified Boussinesq fluid, C, is given by (2.9b) (with n = 1). The 
Froude number is varied as 0.6 < F d 1.4. The Reynolds number, defined by 

is fixed to be lo3. Here, ~ ( 0 )  can be used as a representative value of density since the 
density difference between the top and the bottom of the channel is only 10%. As a 
representative length, we can also use the channel depth 0 instead of h,,,. In this study 
0 and h,,, are simply related by (3.2~) .  

The value of R e  = lo3 was used because recent studies (Hanazaki 1992, 1993a, 6) 
have shown that, if the Reynolds number is less than about 500, the effect of the 
viscosity is too strong to investigate the essentially inviscid mechanisms of the 
generation and propagation of the wave. For comparison with the weakly nonlinear 
theories that assume inviscid fluid, we need to know what occurs in the limit of infinite 
Reynolds number. The author has tested the case of Re = lo4 with F = 1 .O, and found 
that the upstream wave patterns, including the wave amplitude and the wave 
generation period, are quantitatively almost unchanged at least until the second 
upstream wave is generated. Since it sometimes takes a very long time before the effect 
of the viscosity becomes apparent (e.g. compare figures 1 a and 8a of Smyth 1988), this 
test might not be sufficient to consider the viscous effects in the long-time limit. 
However, to know the development of the upstream waves for a sufficiently long time, 
we can say that the Reynolds number lo3 is large enough. 

We have used grids of 400 x 80 x 100 (x x y x z )  for the channel of W = 400  and 
400 x 40 x 100 (x x y x z)  for the channel of W = 200. For both the nearly two-layer 
flow and the linearly stratified Boussinesq flow, the distribution of the grid points in 
the z-direction is the same as in Hanazaki (1992) except just above the obstacle, where 
the differences in the dimensionality and the shape of the obstacle give some 
differences. For example, in the case of nearly two-layer flow, the grid spacing is small 
near the interface of the two to capture the rather abrupt density variation. At least 
seven grid points are distributed across the interface whose thickness is estimated as 
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D / 5 0  x 2 from ( 3 . 4 ~ ) .  The grid is conccntratcd near the louer boundary [z = ~ ( . Y . , I , ) ]  to  
takc into account the ob\tucle shape (3.2) accuratcl!. I n  the !.- direction, the grid 
spacing is constant (hi. = 0.5D) .  I n  the .\.-direction. wcak stretching which makes the 
grid ;I little coarser iicar the upstrcam boundary is perlhrmed where .Y < - 51). 
Therefore. A.Y is gihen approximately by A.v = 0.2D wherc .\- < -5D.  while i t  is given 
exactly by A.v = 0.2D \{.here .\- > - 5D. 

We have tcsted a grid with 800 x 40 x 100 (.\- X J .  x z )  grid points for W = 400.  
Almost no quantitative differences were found i n  the upstream waves and the 
downstream depression region, and therefore, we can say that the grid spacing used i n  
this study is fine enough. For the time differencing, A( U r / D )  = 0.01 is used because the 
use of A( b ' t /D)  = 0.005 showed almost no quantitative differences. Conservation of 
mass was checked a t  the inflow and the outflow boundaries. The difference in the total 
inass that passes through the inflob. and the outflow boundaries per unit time was 
within 0.2% and so we can say tha t  inass conservation is also achieved with high 
accuracy. Typical CPU time required for the computation up to U t / D  = 400 using the 
400 x 80 x 100 (.Y x 1 '  x z )  grid was 25 hours on the NEC SX-3 computer (5.5GFLOPS 
with single processor) of the Centre for Global Environmental Research of the 
National Institute for Environmental Studies. 

T o  compare the solution of the fully nonlinear Navier- stokes equations with the 
weakly nonlinear theory. we also solved the fKP and E K P  equations (2.7)) 
numerically. The numerical method is the same as in  Katsis & Akylas (1987) (see their 
equation (24j), where an explicit scheme of Lax-Wendroff type was used. The scheme 
assures third-order accuracy in time and second-order accuracy in space. It does not 
require the filtering in the !,-direction often used to avoid the numerical instability 
caused by waves of short wavelength. In this study AX3 A Y  and A T  were set to be 

duction of these values (e.g. A(t-fX) = I x 10-'0 or  A ( 8 T )  = 2.5 x lO-'D/U) made 
ahnost no quantitative difference to the solution. This assures that the solutions of the 
fKP and the fEKP equations presented i n  this paper contain only negligible truncation 
errors. 

A( t,' -f L X )  = 2 x 10 ~ ' 0 ,  A((;- ' Y )  = 5 x l0-'0 and A((; -2T) = 5 x 10-"O/Cr. Further re- 

4. Results 
In figure 2, time development of the resonant ( F  = 1 .O) flow of a nearly two-layer 

fluid over topography is shown. Here A(.Y.J,, f) = A,(.Y.!., t )  is calculated using the 
horizontal velocity U ( . Y , ~ , ,  3, r )  that can be written as 

,. 
Ll( .Y,J ,z , t ) -L '= -K,, c A , ~ ( . Y , ! ' , f j ~ + ~ ( ~ , ~ ) .  d41// (4. I N )  

/ / = I  dl 

By using the orthogonality condition of the eigenfunctions: 

(4.1 b j  

A ,,(.Y, J,, t )  is calculated as 

(4.1 c) 

We should note that the value of A,!(.Y.y, t )  thus obtained contains an error of O(t). 
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FIGIJRE 2. Time development of A(.\-.?.. t )  obtained from the solution of the Nabier-Stokes equations 
when F = 1.0 (two-layer flow): (u)  I ' r / D  = 40: (h )  C' t /D = 80; (c) L'.//D = 200; (d) C't/D = 400. 



I n  the i n i t i ; i l  period ( L ' r / D  = 40). the upstream waves are curved backwards (figure 
2 r r ) .  At around L'r/D = 60. the fat- side ends of the ~ipstream waves reach the sidewall 
and begin to bc reflected. After that. the upstream waves become gradudly straight 
crested i ts  time proceeds because the propagation speed of the upstream wave is faster 
near the sidewall ( .I ,  = 4011) than near thc centreplane (j. = 0). This difference in the 
propagation speed is becaiise the wave amplitude is larger near the sidewall than near 
the cent rcplanc. This occurs beciiii>c the ~vi ives  are reflected at  the sidewall and waves 
perpendicular to the \\.all appear (see also Figure 5 ) .  Downstream of the obstacle, a 
flat depression is formed and it  becomes longer a s  time proceeds. Although its 
length becomes nearly in \  ariant after U r / / l  = 200 just downstream of the obstacle 
(.I- > O..I. 2 0). i t  is still elongated near the sidewall until a t  lcast Ut /D  = 400. 
Further do\t,nstreain. lee waves arc generated which also propagate obliquely to the 
side\v:ill and linally begin to be reflected (figure 2 d ) .  

To compare this solution to the weakly nonlinear theory. the solutions of the fKP 
a n d  I'EKP equations (see (3.7)) when I; = 1.0 ( c l f /D  = 200). with ( I , ,  ( I ,  and (I,, given by 
(3 , s ) .  are s1iou.n in figure 3. The overall qualitative features agree with the solution of 
the 1 ' i i l Ih  nonlincar Na\iet- Stokes equations. That is. upstream advanciiig waves. 
d o w  nstrcam depressions i tnd  Ice \va\'es appear in these solutions. However, there are 
some quantitative differences. A nearly flat depression just downstream of the obstacle 
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(.Y  > 0, 1‘ = 0), which is typical in two-dimensional waves and also seen in the three-
dimensional solution of the NavierStokes  equations. does not appear in the solutions
of the fKP and fEKP  equations, although in the solution of the fEKP  equation. the
curve of the depression is weaker. In addition, in the solution of the fKP equation
(figure 3(r),  the generation period of the upstream waves is shorter and the upstream-
advancing speed is larger. These differences are the same as for the two-dimensional
fluid (Melville & Helfrich 1987; Hanazaki 1992). Although the upstream waves have
comparable amplitudes, the lee-wave amplitude is highly over-predicted. In the
solution of the fEKP  equation (figure 3 h), the amplitude of the upstream wave is over-
predicted although the lee-wave amplitude is smaller than that from the solution of the
fKP equation. The generation period of the upstream wave is longer and the upstream-
advancing speed is smaller than from the solution of the Navier-Stokes equations. It
seems that, except just upstream of the obstacle (.Y < 0,~’  < 2OD), the IEKP  equation
shows better agreement with the Navier-Stokes equations than the fKP equation.
However, the solution of the fEKP  equation shows large differences just upstream of
the obstacle (X < 0,~’  < 200) where we have most concern. Therefore, we cannot say
without qualification that the fEKP  equation is a sufficiently accurate model of the
phenomenon. We note that, although comparisons are made here only for F = 1.0,
typical qualitative differences were the same for the other Froude numbers near
resonance. In the solution of the fEKP  equation, the monotonic bore shown in
Tomasson & Melville (1991) (see their figure 13 6) did not appear. This may be because
the amplitude of the upstream wave was smaller in this study than in theirs.

It should be noted that in figures 2 and 3 the amplitude of the upstream wave
becomes smaller as it propagates. Previous solution of the weakly nonlinear equations
(Ertekin et  al. 1986, figure I ; Katsis & Akylas 1987, figure 3(n); and Tomasson &
Melville 1991, figure 6(h)) all show that upstream waves have equal amplitude that is
invariant with time. However, this would occur only after a much longer time has
passed and the upstream waves have become nearly completely straight crested or two-
dimensional. In this study, even in the last stage of the time evolution, the upstream
waves develop still three-dimensionally. This is because the channel is wide so that the
time required for the two-dimensionalization of the upstream wave is long compared
to the wave-generation period. Therefore, the waves develop in a similar way to the
waves in a horizontally unbounded fluid. In fact, in the solution of the fKP equation
for horizontally unbounded fluid, Lee & Grimshaw (1990) found that the upstream
waves have larger amplitude near the obstacle (see their figures 1, 4, 5 and 6). In the
solution of the forced Boussinesq equations, Pedersen (1988, figure 9) showed the same
result. He also found that the height variation in the -u-direction  is reversed on moving
toward the open boundary from the centreplane, and near the open boundary the
foremost wave has the largest amplitude (see his figure 9). This also agrees with our
figures 2 and 3. If we use an obstacle of smaller height, the wave-generation period
would become longer, or if we use a narrower channel, reflection of the wave at the
sidewall occurs faster and two-dimensionalization occurs faster. In those cases the
wave-generation period would become comparable with the time required for the two-
dimensionalization of the upstream wave and upstream waves of equal amplitude
would be generated (see also figure 8a).

To see the Froude-number dependence of the wave, results for various Froude
numbers at Ut/D = 200 are shown in figure 4. When F = 0.9, upstream waves are weak
compared to when case of F = 1 .O (figure 2 c).  The upstream-advancing speed is faster
because of the faster linear-wave speed and the wave-generation period is shorter. The
length of the downstream depression is smaller and the lee-wave amplitude is larger.
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FIGUKI: 4. .4(.\-..1'. t )  obtained from the solution of tlic Navier-Stokes equations for various Froude 

numbers (tho-layer flo\b, L ' r /D  = 700): ( ( I )  F =  0.9;  ( h )  F =  1.05; (c) F =  1 . 1 :  (d) F =  1.4. 
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Thcse ditfcrences, especially ncar tlie centreplatic (.I, = 0). arc esscntiall) thc samc ;IS i n  
two-dimensional flows. When F = I .OS, the upstrcain \\;ives ha\e  largcr amplitiidc and 
longer wa\,e-generatiori period. Evcn whcn f 3 1 .  upstream \vaves generation has ;I 

long-time de\elopment a s  has bcen predicted by the Lieakly nonlinear theories. When 
F = 1 .  1. the upstream waves have even larger amplitude but h a w  ;in even longer \vii\,e- 
generation period. When F = 1.4 and the f l o ~  is supercritical. the upstream \\aim ;ire 
no longer generated and an elevation of fluid just above tlie topography is trailing 
obliquely downstream, having an angle about /i' = 45" to the pi-imarq flow direction. 
This angle approximately agrees with the value determincd by C'cos 0 = C',. o r  
equivalently. by H = cos ' ( l /F)  = c o ~ - ~ ( I / 1 . 4 )  = 41". The dounstreain depression is 
also formed at this Froude number although i t  is not flat near .i' = 0.  For supercritical 
flows, Ma & Tulin (1993) found a V-wakc bchind a ship model. Their rcsults arc for 
larger Froude number ( F  3 3). but our downstream \save pattcrns for F = 1.4 also 
show a similar V-wake. which will become narrower for larger Froude numbers. 

A controversial issue raised here is the mechanism of the two-diinensionalization of 
the upstream wabe. By solving the IXP or  the forced Boussinesq equations. Katsis & 
Akylas ( I  987) and Pedersen (1988) explained this two-dimensionalization in the Lvater- 
wave problem by Mach reflection of the Boussinesq solitary wave at the sidewall. Mach 
reflection of a Boussinesq solitary wave of sech' profile was theoretically considered by 
Miles (1977~~ h, 1979). Later Melville (1980) showed that. in the theory of Miles 
(1977rr, h), the mass and the energy are conserved while the momentum is not and this 
causes the discrepancy between the theory and his experiments. Funakoshi (198 1) 
showed, by solving the equations for water waves which retain only the terms of the 
lowest-order nonlinearity, that Miles' theory is correct if the wave amplitude is small 
and the sech' profile of the Boussinesq solitary wave is retained. Therefore, although 
the theory is not yet fully confirmed quantitatively, i t  is known that some abnormal 
reflection occurs when a solitary wave is incident on a wall at  a small angle. On the 
other hand, Tomasson & Melville (1991) showed that the phenomenon can be 
interpreted as the separation of the lateral modes due to the differences in the group 
velocity of the linear wave. 

To see the two-diniensionalization more clear, contours of A(.u, j', r )  corresponding 
to figure 2 are shown in figure 5 .  At first ( U f / D  = 40, figure 5 0 ) ,  the upstream wave is 
curved backwards as seen also in figure 2. but after the side end of the wave reaches 
the sidewall at  about U t / D  = 60, the wave is reflected and a third wave whose wave 
crest is perpendicular to  the sidewall appears (figure 5b). This third wave is similar to 
the Mach stem which appears in Mach reflection. This third wave becomes longer as 
time proceeds, forming a straight-crested wave front. The upstream-advancing speed 
of the Mach-stem like wave is faster than the wave near the centreplane because the 
amplitude is larger. In addition, the stem becomes longer roughly proportional to time. 
Therefore, the upstream front becomes two-dimensional as time proceeds. The 
amplitude of the reflected wave is very weak compared with the incident wave, 
although in figure 5(c-d) the second upstream wave overlaps the reflected wave and it 
becomes difficult to know the amplitude of the reflected wave. Also. the angle of 
reflection is larger than the incident angle in figure 5(h-d) (see also table 1). These 
features all agree with the Mach reflection mechanism. 

In figure 6, contours of A(.u,js, t )  for various Froude numbers a short time after the 
foremost upstream wave begins to be reflected are shown. When upstream-advancing 
waves are generated ( F  = 1.0, 1.05 and 1.1)  (see figures 5h ,  6 u ,  h) ,  the reflection angle 
is larger than the incident angle and the reflection pattern is qualitatively the same for 
all the Froude numbers near resonance ( F z  I ) .  Although it is dificult to exactly 
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FIGURE 5. Time development of contours of A(.Y,J,, t )  obtained from the solution of the Navier-Stokes 
equations when F =  1.0 (two-layer flow): (a) U t l D  = 40; ( h )  U t l D  = 80; (c) U t l D  = 200; (d) 
U t l D  = 400. In (b), (c) and (d),  the Mach stem perpendicular to the sidewall and the directions of 
the incident and reflected waves are shown by additional straight lines. 
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FIGURE 6. Contours of A(  \-..\,. t )  obtaincd from the solution of ihc Na\ier-Stokes equ;rtions for 
various Froudc numbers (two-layer flow). ( ( I )  F =  1.05 ( L r / D  = 100): ( h )  F =  1 . 1  ( C  f / / )  = 120):  (4  
I.'= I .4 ( C t / D  = 200). The interval of the contour is A(c.A) = 0.0 I D. 7 tic Mach stcin per'peiidictilar 
to the sidewall and the directions of the incident and rcflcctcd i\;i\cs are h t i o ~  11 bq additional c,traight 
lines. 

determine the incident and reflection angles because both the incident and reflected 
waves are curved and there are some ambiguities i n  determining these angles. the 
reflection angle is consistently more than 6" larger than the incident angle as  shown 
table 1 .  As is typical in Mach reflection. the amplitude of tlic reflected w a i ~  is xeakcr 
than the incident wave. although the reflection pi-ocess is unsteady and the amplitude 
of the reflected wave is still growing i n  these figur-es. These features qualitatively show 
that the reflection process near the resonant Froude number cannot be explained by 
normal reflection, and agrees with the Mach reflection discussed by Miles (1977". h) .  



308 H. Hanazaki 

Froude 
number 

0.6 
0.9 
1 .0 
1.05 
1 . 1  
1.4 

Time 

70 
80 
80 

100 
120 
200 

(Ur lD) 
Channel 

width (D) 
20 
40 
40 
40 
40 
40 

Incident 
angle (deg.) 

11  
29 
35 
35 
35 
41 

Reflection 
angle (deg.) 

18 
36 
43 
42 
41 
41 

Difference 

I 
7 
8 
I 
6 
0 

(deg.1 

TABLE 1. Incident and reflection angles of the upstream waves at  the sidewall for various Froude 
numbers 

It should be noted that Miles' theory is intended for a Boussinesq solitary wave of sechz 
profile. In this study, the upstream wave pattern does not agree quantitatively with the 
solution of the fKP equation and may not have the exact sech' profile. However, the 
upstream wave pattern is similar to the Boussinesq solitary wave and shows a 
qualitatively similar reflection pattern. 

When the flow is supercritical and no upstream waves are generated ( F  = 1.4, figure 
6c), the incident angle and the reflection angle agree (41") (see table 1) and the 
amplitude of the reflected wave is comparable with the incident wave. This means that 
the reflection is a normal reflection. Note that the wave patterns are quite similar to the 
solution of the forced Boussinesq equations for water waves at the same Froude 
number (figure 1 a, b of Pedersen 1988). 

From table 1, we see that the critical incident angle, which is determined as the 
boundary between the normal and Mach reflection, is approximately 40" in this study. 
This value seems to be large compared to the prediction of the theory by Miles (19778) 
(see table 4 of Pedersen 1988). In an experiment, Perroud (1957) showed that the 
critical angle is 45" independent of the amplitude of the incident wave when the 
amplitude is fairly large. In this study also, the amplitude of the upstream wave is large 
in the sense that the upstream wave profile does not agree with the fKP equation. 
Therefore, the critical angle would become large. Recently, Tanaka (1993) solved the 
'almost' fully nonlinear equations for three-dimensional water waves. He found that, 
when the wave amplitude divided by the water depth is 0.3, the critical angle is 37.8". 
This value is also consistent with our results. 

To see if the two-dimensionalization is a result of the linear dispersion relation, we 
consider the dispersion relation of the unforced linearized KP equation as done by 
Tomasson & Melville (1991). If we substitute 

(4.2) 
into the linearized KP equation without a forcing term (cf. (2.7)) noting that x, y and 
t are scaled as in (2.2), we obtain the dispersion relation 

A(X,  Y,  T )  K ei(kz-wt) cos ( b l  w, 

w = C, a3k3--  "' ) f t n k ,  ( 2 W k  

and the corresponding group velocity 

C =-= C, a,3k2+- '" )+cA. "' ak ( 2Wk2 

(4.3) 

(4.4) 

We note here that the form of the dispersion relation (4.3) is different from (2.7) of 
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Tomasson & Melville (1991) because they used a slightly different set of equations (see 
their (2.1 a, 6)) from the fKP equation. If we assume an additional relation (see their 
(2.1 l)), their equations (2.1 a, b) agree with the fKP equation and the dispersion 
relation becomes (4.3). In other words, Tomasson & Melville (1991) did not solve the 
usual fKP equation so that the dispersion relation (see their (2.7) and figure 1) and 
hence the behaviour of the wave would be somewhat different from ours, although we 
note that our (4.3) and (2.7) of Tomasson & Melville (1991) agree in that the lowest 
mode can have the maximum upstream-advancing group velocity and as 1 increases, 
the speed becomes slower. 

We know from (4.4) that the maximum group velocity 

occurs at 
k = (l27t2/6a,W);. 

(4 .54 

(4.5 6 )  

Therefore, the difference in the speed of the foremost wave of lateral modes 1 = 0 and 
1 = 1 (with it = 1) is obtained as 

1 l7t u (6a3)z - - 
W F ’  

To see if this result of the linear dispersion relation can be applied to the solution of 
the Navier-Stokes equations, the time development of the lateral wave modes 1 = 0 
and 1 = 1 when F = 1.0 is shown in figure 7. Because A(x ,  y ,  t )  can be decomposed by 
complete orthogonal functions as 

cc 

A(& y, t )  = c &, t )  cos (Iw/ W ) ,  ( 4 . 7 ~ )  
1=0 

the amplitude of the each lateral wave mode is calculated by 

- 
A,(x,  t )  = slow A(x,  y ,  t )  cos ( h y /  W )  dy.  (4.7 b )  

At Ut/D = 200, the distance between the position of the foremost upstream wave of 
modes 1 = 0 and 1 = 1, estimate by (4.6) ( F  = 1.0, W = 400) using (3.5c), is 7.20. 
However, we see in figure 7 that the propagation speed of the upstream front is almost 
the same for modes 1 = 0 and I = 1. In the initial time development, not only the lowest 
mode I = 0 but also higher modes ( I  2 1) are excited and propagate upstream at an 
almost equal speed. Therefore, the upstream wave is not governed by the linear 
dispersion relation, at least near resonance. Although Tomasson & Melville (1991) 
showed the separation of transverse modes when F = 0.6 which may be the result of 
the linear dispersion relation, they did not report such a separation when the flow is 
near resonance (F  = 1.05). They argued that only the lowest mode ( I  = 0) can be 
resonant and develop nonlinearly to form two-dimensional upstream waves. However, 
the present solution of the Navier-Stokes equations shows that the higher modes 
(I 2 1) also develop nonlinearly and propagate upstream. 

The decrease in the amplitude of the mode 1 = 1 with time can be interpreted as 
follows. When reflection at the sidewall occurs, the value of A ( x , y ,  t )  becomes larger 
with time near the sidewall (y 2 i W )  where c o s ( ~ y / W )  is negative. This works to 
reduce the value of i l (x ,  t). Although the results are not shown here, A”,(x, t )  reduces 
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FIGUKI. 7. Time development of thc lateral modes A;,(.\-, /) and i1(.y, t )  in thc solution of 
the Navier--Stokes equations when F =  1.0 (two-laycr f low):  (ti) U i / D  = 40; ( h )  U f / D  = 100: (c) 
U t l D  = 200. 

similarity. The reduction of the wave-front amplitude of modes / = 1 and I = 2 
corresponds to the dominance of mode I = 0 and the resultant two-dimensionalization 
of the upstream wave. We note here that the qualitative feature of the time 
development of i,(s, f) (/ = 0. 1 ,  and 2) was the same for the other near-resonant 
Froude numbers ( F  = 0.9, 1.05, 1.1). 

In figure 8, the effect of the channel width on the upstream wave is shown. When the 
channel width is small ( W  = ZOO), the two-dimensionalization of the upstream wave 
occurs faster because the reflection of the upstream wave begins sooner. Therefore, the 
foremost wave is already approximately two-dimensional at U t / D  = 200. In this 
case, the time required for the two-dimensionalization of the upstream wave is smaller 
and is comparable with the wave generation period. Therefore, nearly straight-crested 
upstream waves appear to be generated as we noted earlier in the discussions of figure 
2 and 3. When the channel width is infinite (or when there is no sidewall), reflection 
does not occur and two-dimensionalization does not occur. By comparing these figures 
with figure 4(6), we note that until Ut/D = 200, the wave-generation period is nearly 
independent of the channel width. Previous studies on water waves (e.g. Ertekin 1984; 
Ertekin & Qian 1989) show that, as the blockage coefficient increases, the wave- 
generation period decreases. The difference probably comes from the fact that the ratio 
of the channel width to the wavelength of the upstream solitary wave is much larger 
in this study. For example, in the study of Ertekin (1984), the ratio is generally about 
less than 2, if we estimate i t  from his figure 131 ( F  = 1.0). where the widest channel is 
used in his experiments. In most of his experiments, the upstream wave becomes nearly 
straight crested before the first solition has been detached. In this study, the ratio is 
about 4 even for the narrowest channel ( W  = 200). Therefore, the channel width is 
effectively larger and it takes a longer time for the upstream waves to become two- 
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FIGURE 8. Effect of the channel width when F =  1.05 (two-layer flow, U / / D  = 200): 
( ( I )  w = 20D;  ( / I )  w = x. 

dimensional. Lee & Grimshaw (1990) (see their C, in (13)) showed that in the solitary- 
wave solution of the unforced KP equation, the energy flux velocity in the y-direction 
is proportional to AJA,,  where A, and A, are respectively the wavelength in the x- and 
y-directions. This qualitatively supports our conjecture since for wider channels, waves 
of larger A, will become dominant. The blockage coefficient would determine the 
period of the upstream-wave generation after sidewall effect becomes prevailing and 
the upstream waves become two-dimensional. However, until the far side end of the 
wave reaches the sidewall, the waves would develop freely as if they were in a 
horizontally unbounded fluid. In this study, at least one upstream wave has been 
detached from the obstacle before the sidewall effect becomes very apparent. Therefore, 
the wave-generation period in this study was almost independent of the channel width. 
However, if we investigate a much longer time span, the period may become a function 
of the channel width. The amplitude of the upstream wave is somewhat larger for 
W = 20D and this would result in a smaller wave-generation period in the longer time 
span. 

To see if the two-dimensionalization of the upstream wave occurs at subcritical 
Froude numbers, the results for F = 0.6 are shown in figures 9 and 10. After the 
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FIGURE 9. Time development of A(.\-,?., 1 )  obtained from the solution of the Navier-Stokes 
equations when F =  0.6 (two-layer flow): ( ( I )  U t l D  = 30: (h) UrlD = 70. 

6 0 0  Y = 0 20D 

FIGURE 10. Contours of A ( s , y ,  /) obtained from the solution of the Navier-Stokes equations 
when F = 0.6 (two-layer fow,  U / / D  = 70). The interval of the contour is A(tA) = 0.0020. 

reflection at  the sidewall occurs, the upstream wave becomes straight crested as time 
proceeds. Figure 9 and 10 show reflection patterns similar to the case of the near- 
resonant flow (figures 2, 5b and 6 u ,  h).  Here again, the reflection angle is larger than 
the incident angle (see table 1) and the amplitude of the reflected wave is much smaller 
than the incident wave. These patterns are different from the solution of the weakly 
nonlinear equation given by Tomasson & Melville (1 991) at the same Froude number. 
They showed clear separation of modes I = 0, I and 2 in their figures 1, 2 and 3, each 
mode having sinusoidal structure in the .\.-direction. In addition, the upstream wave 
pattern was very similar to the solution of the linearized equations. From those figures, 
they argued that the two-dimensionalization occurs because of the difference in the 
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FIC;IJK~: I I .  Time development of the lateral modes i , l ( .~.f) and z1(.y, f )  in the solution of 
the Navier-Stokes equations when F =  0.6 (two-laycr flow): ( ( I )  U t / D  = 10: ( / I )  

U t l D  = 30;  ( c )  C't/D = 70. 

propagation speed of the lateral modes of the linear wave. The difference occurs partly 
because the governing equations and the corresponding dispersion relation are slightly 
different from the present case and the upstream waves behave differently, as noted 
earlier. However, we note that the two-dimensionalization occurs in figures 9 and 10 
even when such 'separation' does not occur. 

To see this, the time development of each lateral mode is shown in figure 1 1. At time 
U t / D  = 70, the difference in the position of the foremost waves of modes 1 = 0 and 
1 = 1, estimated by (4.6) ( F  = 0.6, W = 2 0 0 )  using ( 3 . 5 c ) ,  is 8.40.  The upstream waves 
from the solution of the Navier-Stokes equations do not have a sinusoidal structure 
and the dispersion relation (4.3) cannot be applied directly to estimate the wave 
propagation speed quantitatively. However, we see again that each wave mode has 
almost the same propagation speed. We see only the reflection pattern similar to Mach 
reflection as in the near-resonant flows. Even when the flow is subcritical, the upstream 
waves develop nonlinearly. This is because the generated upstream wave has a profile 
similar to the Boussinesq solitary wave rather than a sinusoidal wave. Therefore, 
abnormal reflection similar to Mach reflection occurs. The generation of solitary waves 
at subcritical Froude numbers agrees with the experiments for three-dimensional water 
waves by Ertekin (1984). He found that solitary waves of elevation are found for 
Froude numbers as low as 0.2. 

It seems that only one upstream wave is generated when F = 0.6. The wave pattern 
near the centreplane (J = 0 )  at U t / D  = 70 (figure 9b)  shows 'two' upstream waves but 
the second wave appears because the wave reflected at the sidewall returns again to the 
centreplane. This result is similar to two-dimensional subcritical flow and the 
corresponding solution of the fKdV equation (see figures 8h and 9 of Grimshaw & 
Smyth 1986) where only a finite number of upstream solitary waves is generated. 

Finally we consider the case of linearly stratified Boussinesq flow. Here, the word 
' Boussinesq' means that the governing equations assume the Boussinesq approxi- 
mation. In this case the resonant wave may be governed by the three-dimensional 
version of the equation derived by Grimshaw & Yi (1991) although it has yet to be 
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FIGURE 12. Time development of A(s.. i . .  f )  obtained from the solution of the Navier-Stokes equations 
when F =  0.6 (linearly stratified Boussinesq flow): ( u )  U t l D  = 20; (h)  U t l D  = 50; ( c )  U t l D  = 80. 

derived. Because the two-dimensionalization of the upstream wave has also been 
shown in the subcritical flow of linearly stratified Boussinesq fluid (Hanazaki 1989u, 
figure 8), it is of interest to see what occurs in detail in these flows. As an example, we 
show the case of F = 0.6 in figures 12 and 13. In figure 12, A ( x , y ,  t )  is calculated using 
(4.1) with $,, and C,,(n = 1)  given by ( 2 . 9 ~  h).  Here, c = 1 is used in (4.1) because in 
two-dimensional flow, it  is found that forcing of O(c) excites a wave of O( 1) (Grimshaw 
& Yi 1991 ; Hanazaki 1992. 1993h). In linearly stratified Boussinesq flow, a parameter 
K defined by K = N D / n U  = 1/F has often been used. It should be noted that F = 0.6 
corresponds to K = i. We see a clear separation of the modes 1 = 0 and 1 = 1 in this 
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FIciuKt. 13. Contours 0 1  A(.Y.J,. 1) obtained from the solution o f  the Nakiel- Stokes equations when 
F = 0.6 (linearly stratified Boussinesq floa. [ ' t / L l  = SO). The interval of the contour is AA = 0.002D. 

FIGURF, 14. Time development of the lateral modes &,(.\-, 1 )  and i , ( .u ,  t )  in the solution of 
the Navier-Stokes equations when F = 0.6 (linearly stratified Boussinesq flon.): ( i i )  

U / / D  = 20; ( h )  L f / D  = 50: ( c ~ )  C' / /D = SO. 

case. Figure 14 shows that the propagation speeds of modes I = 0 and I = 1 also have 
clear differences and this causes the two-dirnensionalization of the upstream wave. By 
assuming 

(4.8) 
in the linearized equations for linearly stratified Boussinesq fluid, we can derive a 
dispersion relation and the corresponding group velocity as 

cos (In)./ W )  sin ( / in : /D)  ~i ~ e i ( / k  r-iot)  

and 

i k:' + (h/ W)' + (/m/ D)' 
w = N 

The maximum group velocity occurs when 

(4.9) 

(4.10) 

(4.11) 

At time U t / D  = 80, the difference in the position of the foremost wave of modes 
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1 = 0 and 1 = 1, obtained by substituting (4.11) into (4.10) ( n  = 1, F = 0.6, W = 200) is 
7.90. The wavelength of the foremost wave of mode 1 = 1 estimated by (4.11) is 11.9D. 
These values are consistent with figure 14. Because the upstream wave in this case is 
sinusoidal and not similar to the Boussinesq solitary wave, abnormal reflection similar 
to the Mach reflection does not occur. We know that the nonlinear correction of the 
linear wave speed is small in the case of two-dimensional linearly stratified Boussinesq 
fluid. This would be applicable also to the three-dimensional fluid. Therefore, 
although the propagation speed is consistent with the prediction of the linear theory, 
this does not mean directly that the generation of upstream waves is described by the 
linearized equations. 

5. Conclusions 
We have found that the three-dimensional waves excited by an obstacle near 

resonance in nearly two-layer flow are described qualitatively by the fKP or the fEKP 
equation. In the process of the two-dimensionalization of the upstream wave, it was 
found that abnormal reflection similar to the Mach reflection of a Boussinesq solitary 
wave plays an important role. The phenomenon could not be explained by the 
difference in the group velocity of the lateral mode of the linear wave. 

In the subcritical flow of the nearly two-layer fluid, similar two-dimensionalization 
of the upstream wave occurred. Again, the process was explained by the abnormal 
reflection of the wave at the sidewall, because the upstream wave again had a profile 
similar to the Boussinesq solitary wave. 

In the case of linearly stratified Boussinesq flow, the two-dimensionalization of the 
upstream wave could be explained by the difference in the group velocity of the lateral 
mode of the linear wave, because the upstream wave had a sinusoidal structure and the 
abnormal reflection that is typical to the Boussinesq solitary waves could not occur. 
However, this does not directly mean that the generation of upstream waves can be 
described by linear theory because the nonlinear correction of the linear-wave speed 
would be very small in analogy with the results for two-dimensional waves. 
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